Modeling the Role of Epitope Arrangement on Antibody Binding Stoichiometry in Flaviviruses.

نویسندگان

  • Daniel R Ripoll
  • Ilja Khavrutskii
  • Anders Wallqvist
  • Sidhartha Chaudhury
چکیده

Cryo-electron-microscopy (cryo-EM) structures of flaviviruses reveal significant variation in epitope occupancy across different monoclonal antibodies that have largely been attributed to epitope-level differences in conformation or accessibility that affect antibody binding. The consequences of these variations for macroscopic properties such as antibody binding and neutralization are the results of the law of mass action-a stochastic process of innumerable binding and unbinding events between antibodies and the multiple binding sites on the flavivirus in equilibrium-that cannot be directly imputed from structure alone. We carried out coarse-grained spatial stochastic binding simulations for nine flavivirus antibodies with epitopes defined by cryo-EM or x-ray crystallography to assess the role of epitope spatial arrangement on antibody-binding stoichiometry, occupancy, and neutralization. In our simulations, all epitopes were equally competent for binding, representing the upper limit of binding stoichiometry that results from epitope spatial arrangement alone. Surprisingly, our simulations closely reproduced the relative occupancy and binding stoichiometry observed in cryo-EM, without having to account for differences in epitope accessibility or conformation, suggesting that epitope spatial arrangement alone may be sufficient to explain differences in binding occupancy and stoichiometry between antibodies. Furthermore, we found that there was significant heterogeneity in binding configurations even at saturating antibody concentrations, and that bivalent antibody binding may be more common than previously thought. Finally, we propose a structure-based explanation for the stoichiometric threshold model of neutralization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus

Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this "multiple-hit" perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope...

متن کامل

Identification of a New Broadly Cross-reactive Epitope within Domain III of the Duck Tembusu Virus E Protein

In 2010, a pathogenic flavivirus termed duck Tembusu virus (DTMUV) caused widespread outbreak of egg-drop syndrome in domesticated ducks in China. Although the glycoprotein E of DTMUV is an important structural component of the virus, the B-cell epitopes of this protein remains uncharacterized. Using phage display and mutagenesis, we identified a minimal B-cell epitope, 374EXE/DPPFG380, that me...

متن کامل

Comparative Study of Immunological and Structural Properties of Two Recombinant Vaccine Candidates against Botulinum Neurotoxin Type E

Background: Recently, botulinum neurotoxin (BoNT)-derived recombinant proteins have been suggested as potential botulism vaccines. Here, with concentrating on BoNT type E (BoNT/E), we studied two of these binding domain-based recombinant proteins: a multivalent chimer protein, which is composed of BoNT serotypes A, B and E binding subdomains, and a monovalent recombinant protein, which contains...

متن کامل

Thermodynamic Mechanism for the Evasion of Antibody Neutralization in Flaviviruses

Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of muta...

متن کامل

Ofatumumab Monoclonal Antibody Affinity Maturation Through in silico Modeling

Background: Ofatumumab, an anti-CD20 mAb, was approved in 2009 for the treatment of chronic lymphocytic leukemia. This mAb acts through immune-mediated mechanisms, in particular complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by natural killer cells as well as antibody-dependent phagocytosis by macrophages. Apoptosis induction is another mechanism of this antibody...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 111 8  شماره 

صفحات  -

تاریخ انتشار 2016